About me
I am a first-year Ph.D. student in the Yale Graphics Group, performing computer graphics research under Dr. Theodore Kim. I recieved my B.S. in Computer Science from Yale in 2024. My research interests include geometry processing, fractal geometry and physical simulation. I was selected as a runner-up for the 2024 CRA Outstanding Undergraduate Researcher Award.
I presented my most recent work, Into the Portal: Directable Fractal Self-Similarity (see below), this summer at ACM SIGGRAPH 2024 in Denver, CO.
Publications
Ours is the first algorithm to enable this level of general artistic control while also maintaining the character of the original fractal shape. We introduce the notion of placing “portals” into the iteration space of a dynamical system, bridging the aesthetics of iterated maps with the fine-grained control of iterated function systems (IFS). Our method is effective in both 2D and 3D.
The key to our approach is a versor-modulus analysis of iterated function systems that allows us to formulate a novel shape modulus function that directly controls the broad shape of a Julia set, while keeping fine-grained fractal details intact.
Our formulation contains flexible artistic controls that allow users to seamlessly add fractal detail to desired spatial regions, while transitioning back to the original shape in others. No previous approach allows these sort of Mandelbrot-like details to be "painted" onto meshes.